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ZEROS OF VECTOR FIELDS AND
CHARACTERISTIC NUMBERS

B. CENKL

1. Introduction

Let M be a compact oriented C=-smooth » (=4m)-dimensional manifold,
and X a smooth vector field on M. Suppose that the vector field X has a set
S of isolated zero-order zero points. Furthermore, let us assume that we are
given a vector bundle E over M and that the flow, defined by X on M, lifts to
a flow on E. Let @(c(E®)) be a polynomial in Chern classes of the complexifi-
cation E¢ of E. Then in certain special cases one can define [1] a singular pair
@0 = (Jz, ag) of forms (depending on @ and E), where aj has S as a set of its
singular points, ¢, is smooth everywhere, and ¢, = daz on M — § such that
the residue of this singular pair determines the Chern numbers corresponding
to @(c(E9)), namely,

1.1) O(c(E*)IM] = Res ¢, .

This formula can be looked at [5] as a generalization of the classical Hopf
theorem, which says that the Euler characteristic of a manifold is equal to the
number of isolated zero points of a vector field on that manifold—each zero
point taken with appropriate sign. From this point of view formula (1.1) was
derived for various cases (M a complex analytic manifold with X meromorphic
and E a holomorphic vector bundle, and M a riemannian manifold with X as
killing vector field which has a lift to a real vector bundle F) by Baum, Bott,
Cheeger. The case where the set S of zero points of X is a collection of sub-
manifolds has also been considered. In all these cases one can assume that @
is an arbitrary polynomial in (1.1). The vector fields which have been consid-
ered satisfy obvious elliptic differential equations. The following question
arises: can one obtain formula (1.1) under the assumption that X satisfies
DX = 0 for some elliptic operator D? In this case the residue formula (1.1)
can be derived from the general methods of Ativah and Singer [3] but under
an additional assumption that the 1-parameter group {exp (¢X)} is a subgroup
of a compact group. But this fails to be the case even for the holomorphic vector

fields. Therefore it is interesting to find an analogue of (1.1) when the 1-para-
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meter group {exp (+X)} is not necessarily a subgroup of a compact group.

In this paper we consider a compact manifold M together with a first order
elliptic transitive oriented involutive pseudogroup I" on it. Furthermore we
assume that X is a ['-vector field with a set S of isolated zero-order zero points
and that the endomorphism L, of T,(M), defined by the Lie derivative Ly at
p, has the eigenvalues A,(p), - - -, 2,(p) at all points p ¢ §. Let T, be the com-
plexified tangent bundle T(M), and ¢(T,) = [] 2, (1 +¥,) the formal factoriza-
tion of the total Chern class. Then we can express the j-th Chern class ¢,(T,)
as an elementary symmetric function of the y,’s, and we define the polynomial
¢ to each @ by the relation @(c(T,)) = P(c(T,), -+, i(Te)) = ¢y« **» Yn)s
2! = n. In this case (1.1) reads (Theorem 7.1):

1.2 GETNIM] = T 4e, $AP): - 2:P))
(1.2) (T NM] = 3 4ep o) L

where ¢, = signdet (1 — el?).

Since @ can not be arbitrary in formula (1.2), @(c(7T,)) has to be the index
cocycle of the (elliptic complex) resolution of the sheaf of germs of I'-vector
fields, so that the denominator (1,(p)- - - 2,(?))~/* can be interpreted as a resi-
due of certain cohomology class (Theorem 5.1); this theorem is a generaliza-
tion of similar residue formula of Bott for holomorphic vector field on a com-
plex manifold.

2. Resolution of the sheaf of " vector fields

Let M be an n-dimensional (n = 2/ = 4m) C~-smooth manifold with a transi-
tive k-th order pseudogroup [I” on it. For all basic definitions and fundamental
properties, concerning pseudogroups and related operators, we refer to [6], {7],
{S]. A vector field Y on M is called a ["-vector field if the one-parameter group
of transformations {exp (¢Y)} belongs to I". The vector bundle of r-jets, r > 0,
of all I" vector fields on M will be denoted by R,. R, is a subbundle of the
bundle of r-jets of sections of the tangent bundle T = T(M). There is a well
defined differential operator of order &£ on T, namely,

2.1) Ve: T— TR, .

This operator factors through J¥(T) so that V', = d,-j*, where j* is the opera-
tor which takes a section into its k-jet, and d, is a bundle map. Obviously
R, = ker d;. If the operator V', is involutive we say that the pseudogroup I’ is
an involutive pseudogroup. Let us denote by V, the typical fibre of the vector
bundle R, and by G,,, its structure group. The principal G, ,,-bundle associ-
ated with R, will be denoted by P, ., — M. The group G, ., being the structure
group of R, is in fact a subgroup of GL(dim V,, R). On the other hand, G,,,
is isomorphic to the group of (r + 1)-jets of all transformations of I preserving
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a fixed point 0 € M. The jet projection gives a surjective map G, — G, — 1,
r > s. We shall denote by n: R, — R, the jet projection, r > s. In each con-
jugacy class of the maximal compact subgroups of G,, r > 0, one can choose
a group H, such that the surjective map G, — G,, r > s, carries H, into H,.
In fact we have the following proposition.

Proposition 2.1, The jet projection G, — G, induces the isomorphism

2.2) p:.H,.—-H,, r>s>1.

Proof. First, let us show that the map pj is injective. Suppose that there is
a nonzero element &’ € ker p; C H, C G,. Then thereexists g ¢ I', $(0) = 0,
such that jj¢ = k’, where jj is the r-jet of ¢ at 0. Let us choose local coordinates
(x*, --+,x™) in a meighborhood U of 0. Then ¢ has the components ¢’ =
&, e, x™), j=1,--.,n If we denote by ..., the partial derivative
(8°¢7 /ox*- - . 5x%)(0), then k’ has coordinates (0, &7, ¢l -« +» $hrns) s & ity »
i, = 1, ..., n; where ¢{ is the Kronecker symbol.

From the composition of jets it follows that k"2 = k’- k” has local coordinates

c ey,

(0’ 51{3 2¢1{1i23 2¢*{1izi; + 2¢{12 11111‘; + Z¢1{11¢§2i;’ v ') *

By induction we get the local coordinates (0, 6/, N-¢7,,, - - -) for K'N.

Now we consider the image of ker p? in the euclidean space of sufficiently
high dimension under the mapping which sends &’ to the point with coordinates
0, 0{, ¢4, -+ +» $4...;). This mapping being continuous and bijective guaran-
tees that the image of ker p7 is closed and bounded. But this is possible only
if ¢7...., = 0,2 < s < r. This proves that p] is injective. Surjectivity of the
map p] follows from the fact that H, is a maximal compact subgroup.

Definition 2.1. The pseudogroup I is oriented if the vector bundle R, is
an oriented vector bundle for r > 0.

From now on we assume that I” is oriented. Then the structure group G,,,
of R, can be reduced to the maximal compact subgroup H..

Moreover, by the Proposition 2.1, the bundle R,, r > 1, has H, as its struc-
ture group. Let us denote by =,: Py, — By, the Stiefel H,-bundle
SO(N)/SO(N — n) over the Grassmann manifold SON)/(SO(N — ») X H)
for some fixed sufficiently large N.

From the universal bundle theorem and the above proposition, it follows
that the bundles R, and R, =T, g,., = kernel of the jet projection R,,;—R,,
are pull backs by certain map f: M — By, of the vector bundles

E7=PH1XH,V79 7207
(2.3) A =Eo ’
K...= PH1 Xm viet, vitt=ker (V,., — V), r=0,
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over By,. In other words there exists a smooth map f such that R, = f*E,,
g, = f*K,,;, T = f*A4, where = stands for bundle equivalence. Moreover,
if we denote by P(H,) the reduction of the structure group of P, to H,, we have
also P(H)) = f*Py,.

Let T* be the cotangent bundle of M. We define a vector bundle morphism

2.9 3: ST T* S T* R 8 T*,
as the composition of bundle maps
ST __,Té T* > T*® (C;() THT* ® STT* ,

where S"T* stands for the r-th symmetric product of T*. Then for any vector )
bundle F over M the map ¢ extends to a vector bundle morphism -

2.5) G AT* Q@S T*@F — \ T*Q@ST*®F

by sending t ® s ® f into (—1)’"* ® d(s) ® f. Notice that a bundle map § is
well defined if in formula (2.5) we replace T* by any vector bundie.
From the constructxon 1t follows that g,“ is a subbundle of S**'T* @ T. It

can be shown [6] that 6(/\ T*®g,.) C /\ T*® g,, r > 0, and in fact that,
for the k-th order involutive pseudogroup I, the sequence

F.) 7
2.6) 0 guun—> T* @ gyrns—> +++ —> A T*® g, —> 0

is exact.

Because we shall use the explicit structure of the vector bundles to enter
Spencer’s resolution of the sheaf © of germs of I"-vector fields on M, we now
present the construction in the form which is convenient for our purposes. Let
A* be the dual of 4. Then there is a bundle map

- 3
@D S AA*®K.—NA*®K,, 1<ji<n0<r,
which can also be defined formally as

7
@)@, A - Aa) =3 (—=1¢sla, A -+« ANa A -+ A apa,
s=1

g-1
forany re N A*®K,,,and a;, ---,a,¢ A.
The dot operation is induced in an obvious way by restricting to the sub-

bundle ]/_\IA* X K, ., the map
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J-1 J
/\A*XS7'-1A*XA_>/\A*XSTA*XA’
which comes from the map

AF X XAFXA* X o XA* XA A* X XAFXAFX - X A* XA
jll r-itl 1}’

Y
r

Proposition 2.2. If I' is a transitive elliptic involutive pseudogroup of order
k, and €;_, — By, 0 < 1 < n, are the vector bundles defined by

i i-1
(2.8) Fi,=(NA* XE)NN A* XK,,), i=1l; &, =E:,

then there exists an exact sequence of sheaves

29 O0—b—0c 2, 2. P o
where
Cioi =iy

and the D’s are first order differential operators.
Proof. For the construction of sequence (2.9) see [6] ; the exactness of this
sequence follows from the third fundamental theorem (see [7]).

3. Algebraic structure of C:_,

The Lie bracket [, ] on the vector fields on M defines a bilinear map
R, X R, — R,_,, r > 0, which we will denote by [ , J. It can be explicitely
described as follows: Let o,, 0, be elements of R,!q, g € M. Then there are I'-
vector fields 4, and A4, on M such that ¢, = j14;, i = 1, 2. Thus [o,,0,] =
—j7'[A,, A,]. There is an obvious extension of the operation to the R,-valued

differential forms. Let us denote by R? the bundle 7\ T* ® R,. The extension
of [, ] is the operation (which we continue to denote by the same symbol)
as a bilinear mapping R? X R? — R2*¢such thatfor p, = a; X 04, i = 1, 2,
Loy 0] = oy A &, ® [0y, 6,8. Therefore [ , ] defines on the projective limit
R* = lim R¥, R} = @ R? a structure of graded Lie algebra.

The vector bundles C:i_,, r > k, from resolution (2.9) can be interpreted
as bundles of derivations of degree i of the exterior algebra of differential forms
on P,,,. Each element u ¢ Ci_, can be represented by a pair u = (o, §) with
o ¢ R:_, and £ = do — Dg,, Where ¢, € R: with projection #z(s,) = ¢, and D is
the canonical first order operator from R: to Ri*3, [9]. The anti-commutator
a-b — b-a gives a bracket operation on derivations of the exterior algebra on
P,,,, which induces a bracket [ , ] on C* , = @ Ci_, and defines a structure
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of graded Lie algebra on C¥_,. There is a surjective bundle map £: R: — Ci_,;
and an operation [ , J: R? X RZ— R2*? such that for p,, g, € R¥, [£0,, #0,] =
#lpo,, o1, [8]. The operations [ , T and [ , 1 give on R¥ two graded Lie alge-
bra structures, and are related in a simple way. Let us denote by # the projec-
tion R¥ — RY, and, for any o ¢ R2 and r ¢ R%, define D,,-7 = Dz R no +
(~1)*D(r ~ no). Then there is the formula

[e,2]=D,, .7 — (=1?D_.¢ + o[, 7]

(3.1
+ (=1)*e* R} 2(D7) — (—1)%z K n(Da) .

Thus we obtain another Lie algebra structure on R*: R? X R? — R?*9, which
is denoted by the bracket [ , ] and can be defined by the formula

3.2) [6,7] =D,,-t—(=1?2D_,.¢ + [o,7] , ce Rz, 7e R .

The following two propositions follow, by a direct computation, from the defi-
nitions.
Proposition 3.1. For any ¢ € R%, v ¢ R? and any real-valued function f,

(3.3) [o, fc] = df)ir R 7o + flo, 7] .

From (3.3) it follows in particular that if X is a I'-vector field on M with a
zero point p, then for any ¢ ¢ RZ and any real valued function f we have
[i-X, fa](p) = f(P)[iX, ¢]. Therefore the resolution of the operator Ly: R?
— R?, given by

(3-4) Lx = UTX’ ] ’

to the fibre of R? over a zero point of X is an endomorphism of the fibre.
Notice that the endomorphism Ly is well defined by (3.4) for r > 0, and can
be described even more explicitly.

Proposition 3.2, Ler X be a I'-vector field which is zero at a point p on
M, and let ¢ = j'Y for some I'-vector field Y. Then

(3.5) (Lzo)p) = j3[X, Y] .

Proof. Follows directly from the fact that (Lrfe)(p) = f(p)(Lxo)(p) and
from the definition of the “‘ordinary” bracket [ , ] on vector fields.

Remarks. 1. All the Lie algebra structures defined here on R¥, r > &,
are of course well defined already for r > 0.

2. The operator Ly given by (3.4) has a natural extension to /*\ T*® R,,
which is given as an operator

(3.6) Ly=Ly®1+1®Ly,
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where Ly stands for the Lie derivative along X. We shall use the notation Ly
also for the extension Ly, unless there could arise some misunderstanding.

4. Singular forms

In this section we use the ideas of the paper [1] in order to relate the singu-
lar differential forms on the manifold M to the cohomology H*(M, R).

Definition 4.1. We call an r-pair (0, §) of forms on M, r >0, a pair con-
sisting of a smooth (r — 1)-form 4, defined on M except a nowhere dense set
e(f), and an extension & of df to M — e(Q), e(P) being a subset of e(f). For
r = 0, putting # = 0 we have e(§) = §. The sets e(@) and e(f) lie on smooth
locally finite polyhedra of dimensions <n — r — 1 and n — r respectively.

A singular r-chain ¢ on M with real coefficients is said to be admissible for
the r-pair (0, 8), if the support |¢| of ¢ has zero intersection with (@), and the
support joc| of the boundary dc of ¢ does not intersect e(d). Then we define
the residue of (8, ) with respect to an admissible r-chain ¢ as the number

@4.1) R[(@,ﬁ),c]:f@-—fﬁ.

There can be defined an equivalence relation in the set of all r-pairs on M.
The r-pairs (@,, #,) and (8,, §,) are equivalent if R{(8,, 6,), c] = R[(8,, 8,), c] for
each r-chain ¢ which is admissible for both pairs. The set of equivalence classes
[6, 8] of the r-pairs (@, #) form an R-module C"(M, R), r > 0. Define the ex-
terior differential d to be the operation

d:C"M,R) - C*Y(M, R)
given by
d([6, 6]) = [0,6] .
It is immediate that d-d = 0. The kernel of the homomorphism is given by

Z7(M,R) = {[9, 61|for any representation (@, &),

[e=oitpe..inee =9 .

der41
If we denote by s#(M, R) the cohomology algebra of r-pairs, and H(M, R) the
real cohomology algebra, one prove

Proposition 4.1 [1]. Let M be a manifold. Then there is a canonical iso-
morphism

(4.2) H#(M,R) = HM.,R) .
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Let (0, 6) be an r-pair, which represents a singular r-cycle [0, ] € Z"(M, R)
and therefore the cohomology class y of H"(M, R) via the isomorphism (4.2).
We shall talk about the residue of y defined by

(4.3) Res 7 = RI(8, 6), c]

for an admissible r-chain c. We also refer to Res 7 as to the characteristic num-
ber of 7.

5. Characteristic numbers associated with a vector field

In this section we define the important representatives for certain cohomology
classes in the top cohomology H*(M, R). Suppose that we are given a I -vector
field X on M with the set S of isolated zeros of order 0. It turns out that such
a vector field defines in a natural way a characteristic class a(X) ¢ H*(M, R),
and that the characteristic number of «(X) is computable in terms of the eigen-
values of the Lie derivative Ly on T(M), restricted to S.

Because over M = M — S we have a nonvanishing vector field X, the
anihilator X* of X is a well defined subbundle of 1-forms 4!(#) over M. Then
there is an exact sequence

(5.1 0-X* > AM) - X*—>0.

Now we show that there is a representative = of the class X* in A'(M) such
that the following theorem holds.

Theorem 5.1. Let X be a vector field (not necessarily a I'-vector field) on
an oriented manifold M with the set S of N isolated zero points, where X
vanishes up to order zero and the endomorphisms of T,(M), p € S, given by
the Lie derivative Ly have eigenvalues i,(p), - - -, 4,(p). Then there exists a
1-form = on M, with singularities at the points of S, which is a representative
for the class X* in A*(M) such that via the isomorphism (4.2)

[dx A - Adr,x Adr A -+ A dr)
S s— —————— A i t——————
! /-1

represents the cohomology class a(X) ¢ H*(M, R), and

(5.2) Res a(X) = g}s (@)« - - 2, N7 — D! Nk(n))
P

where k(n) is a constant which does not depend on X.

Proof. There are a neighborhood U, of a point pe § and a coordinate
system (xi, - - -, X,) in U, such that the modulo terms which vanish at least up
to the second order are
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XU, ~ Zn:;-ixia/axi, L=24p), 1Kign.
{=1
Then there are functions A, such that
XU, = 3 x,4/0x; .
2=1

Assume that the neighborhoods U, p ¢ S, are mutually disjoint. Let there be
a riemannian metric on M such that the inner product (, ) on T(M)|U, is
given by the formulas

(5.3) (8/0x;,0/9x,) =84y, 1<i,j<n.

In the neighborhood U, define the new inner product [ , ] by

5.9 [8/0x;,0/0x;] = (4;4,)748/0x;,9/0x;)

and the endomorphism A4,: T(M)|U, — T(M)|U, by
Ap0/0%y0y = (yosAol) ™2 M50, 4570 0%y,

(5.5 Ap0/0x,, = —(Raoide) P A\ A3)0[0Xs0 s »

1 < a < I. Now let us define a 1-form x, over U,:

(5.6) z, = [4,(X), 1/IX,X]1.

There exist a smooth function ¢, and a closed neighborhood ¥V, < U, of the
point p such that ¢, = 1 on ¥, and ¢, = 0 on M — U,. Then define

5.7 T= 3 Py -
PES

This 1-form is obviously singular at all points of S. But it turns out that the
n-form d(x N\ drx N\ --- /\ dz) can be smoothly extended across the singular
points, as follows from the observation: On U,

A X) = 3 x,A,A4,9 /0%,
i=1

1
= Z—:x {-xu—l(zza—1zza)—v2./1§:,,2a/a.xuY
=~ % (Rpa 1A VAR 305, 0}
1
[A,(X), 1= Z_:D (%2010 1) V20X, — X3(Aa1An) VA%, 1}

and due to [X, X] = 3 (x.) we get
i=1
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(2 G)m = 14,0, 1.
and finally the formula

n 14
(Zﬁ) ”p/\dﬁp/\ /\d7rp

2[—1(1__ 1)! Kl i+l AN
= @ meyr e TDTEE A e AR A N

Now it is just a matter of direct computation to check that actually
dmy N\ drey N\ -+« A drp) = 0.

Let us denote by B,(p) the ball with the center p and radius ¢, B.(p) C U,,
and let its boundary 3B,(p) be oriented consistently with the orientation of M.
If we denote by k(n) the area of the unit (n — 1)-sphere in M with center in
pe S, then we get from [1] that

(5.8) f g(_1)1+1x,.(§1x§)"dxl Ao AR A oo A dx, = +k()

2
3B¢(p)

for all small e. Therefore without any restriction we can assume that
B,(p) © V,. If we choose such a ball for all pe S, then B, = | J,s B.(D) is a
singular n-chain on M with the orientation given by the orientation of M, and
the residue of the n-pair de Ade A --- Ade,mr Ade A --- A dr) with
respect to B, can be computed. We see that

fdn'/\ ---/\dz—fz/\dn/\ - Ndrn

3B,

=_Z f ﬁp/\dzp/\"'/\dzp

PES
38.:(p)

-5 3 2t~ 1(1—21)2/'2 f Z( Di*ix (lez)z

[2:¢2)

sdxy, A\ - ANdx; A --- Adx,
=2 — DI NK(m) T (4(@) - - - 2,(p)2 .
pES

6. Topological index

In this section we give an explicit formula for the Euler characteristic y(M, ©)
which can be looked at as a topological index of certain elliptic differential
operator associated to the given elliptic pseudogroup I” on a compact oriented
manifold M. To be more specific let us put a riemannian metric along the
fibres of the vector bundles T = T(M) and R, corresponding to the chosen
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reduction of the structure group G, to H,. This induces a metric along the fibres
of Ci_, and the global product by its integral. Let D* be the adjoint operator
to D with respect to this global product. Then there is an operator

l-1 1-1
6.1) D+ D*: Tk, — 3 Gy

s=0

on M. This operator can be extended to the complexification

E=Fcnec=r(fa.ec) =re,
6.2) o —
F=Sceu®cC=f (z; €N ® c) = f*(F)

§=0 s=0

as the operator (D + D*) ® id. We shall write briefly

6.3) D+ D*:E—F,

and denote by its symbol ¢(D + D*). Then we have the Thom isomorphism
(6.4) ¢yt H(M, Q) — H**BM),SM); Q) .

Because the pseudogroup is elliptic, it can be shown that D + D* is an elliptic
operator, and therefore the symbol ¢(D + D¥*) is an injective map from #*E
to #*F. It has to be pointed out that the homotopy class of the isomorphism
a(D 4+ D*) does not depend on the choice of the riemannian metric. Then there
is a unique element in the relative K-group

d(z*E, 7°F, o(D + D*)) € K(B(M), o(M)) .

If we denote by td T the Todd class of T = T® C, and by ch: K(X,Y) -
H*(X,Y; Q) the Chern character, then the topological index i,(D + D*) of
the operator D + D* is defined as the value of the cohomology class

;i ch (d(z*E, n*F, o(D + D*))-td T = g5'ch (D + D*)-td T

on the fundamental cycle [M] of the oriented compact manifold M. In order
to get an explicit formula we simplify the expression for ch (D + D*). The first
step is done in

Proposition 6.1 [9]. Let E and F be the vector bundles over By, defined
by (6.2), and let e(A) be the Euler class of the vector bundle A — By,. Then

3 ch (D + D*) = ¢3' ch (d(z*E, n*F, ¢(D + D*)))
6.5) — e ¢chE —chF
e4)

We npeed a little more than just the universality of the symbol ¢(D + D*)
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required in the previous proposition in order to get more explicit formula for
the right hand side of (6.5). Let us look at the symbol (D) itself. Denote by
V = V, the real H,-module, and by B?, L, the typical fibres of ¢¥i_, ® C and
K, ., ® C respectively. If we take A*, €%_, ® C instead of T* and F in formula
(2.5), restrict to a fibre and take j = 1 we get the H,-morphism

(6.6) S: SR B SV*Q V*Q B,

r > 0, 0 £ i £ n. This map, composed with the symbol

6.7 o(D): V* @ Bt — B!, o<<i<n,
gives
(6.8) o = (1 ®a(D))-5: STHV*® Bt — STV* Q B! .

The injection
(6.9) L, —>SV*Q B

B'=V,®C), r=>1, is obviously also an H,-map. Notice that # = §. From
the general theory [6] it follows that sequence (2.9) is formally exact, so that
for any ! > 1 we have the sequence

— (D DY
610 O Ren—1C R R o N
. PL-KD"1) i

" e s e— Jl_r(ck_l)

whichisexactatR,,, fori>1andatJ,_(Ci_ ) fori>i+1,0<i<r— 1.
The bundle maps p,_,(D?*™!) are defined by the commutative diagram

. 3 Di-1 .
oGy 2220 5 qciy
(6.11) T]-z—zu le—i
. i-1 .
Ci D Ci_,

where we write D? instead D to make clear on which space the operator acts.
The commutative diagram

0=SHMT*QCi_, —T,,(Ci.)— J(Ci.) —0
(6.12) lal(m) lmwi) |
0— §'T* ®CiH— J(CitY) — J,_(CitY)—0

defines a bundie map
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(6.13) a(DY: §T* ® Ci, — ST* @ City

for 0<i<n—1,0<1 0(D% = (D), such that ¢,(D%) = (1 ® ¢(D?))-4.
Therefore by restricting to a fibre we get

(6.14) o (DH]0 = 2L,

and from (6.10) and (6.12) we have the exact sequence of vector bundles

0;-1(D%) a1 DY) L

Sl—lT* ® C}‘_l
-_—> o'l-'r(DT—l)Sl_TT* ® Cl:-l ’

il
(6.15) 00— 8rst —1—) SIT*® Cg—l

where i is an inclusion for I > 1 and # = 3. Now let us consider the com-
plexification of all the vector bundles in (6.15) with the obvious extension of
the operators so that the new sequence remains exact, i.e.,

) .
6.16) 0—2,,0C—>sST*RC_®Cc222)

If we restrict this complex extension to the origin O ¢ M and use the notation
(6.6), we get an exact sequence of vector spaces, with all the maps being H,-
maps,

¢ 117% 0 w5 L =177% 1 He
6.17) O— L, —> S'V*@ B — S W* Q@ B' —>

1=

I SV* QBT .

All the bundles in sequence (6.15) are associated to the principal H,-bundle
P,(H,) — M. The complexification of these vector bundles is associated to the
principal bundle P¢ = PS(H,) — M, which is the h-extension of P,(H,) and is
given as follows: Because H, is a subgroup of SO(n) let us consider the natu-
ral homomorphism

h: SO(n) — Un) .
This gives 2 map
h: HM, H)) — H'M, h(H))) ,

and P,¢ is then given by this homomorphism from P,(H,) up to the equivalence.
Let us denote the A-extension of Py, by P%, — By,. We can certainly find the
representatives in the equivalence classes so that the classifying map f for the
real principal bundle P, gives
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(6.18) PG, = P,

where Pg, is the h-extension of Py,.
Now the complexification of (6.15) is the exact sequence

B -‘-é—l
0 —> PCxyL, —> PCxy SV* QB —> - --

6.19)

I Px, STV* @ BT,
and it is the pull beck, by f, of the exact sequence of vector bundles over By,,

it 7
00— PG xy L, —> PGxuySV*QB —> - --

Tiz]

5 PG xg STTVEQ BT

(6.20)

Notice that P x5 S'V* @ B" = §:4* ® (¢;_,® C), and H, acts on §'V* ® B~
by the representation H, ® h(H,). If we denote briefly ¥;_, ® C by %7, 72}
simply by z*~% and P§ xy L, by %,, we can summerize our results in the fol-
lowing form:

Proposition 6.2.

it rl-1 -2
621 00— ¥, —>SA*RE —> S 4*QE —> - ..
Tl_r, St-r4* @ @

is an exact sequence of vector bundles over By, for 1> 1,0<r < 1. The pull
beck of this sequence, by the classifying map §, is the complexification (6.19)
of (6.15).
It is important to remember that while #,’s and ¥*’s are complex vector
bundles over By, the vector bundles S'’4* are real and & stands for ® 5.
Lemma 6.1. There are polynomials P;, 0 < j < n, P, = +1, in the Chern

characters of the vector bundles A*, - - -, /{ A* such that
(6.22) chE —chF =3 ch &,-P,_, + ch®’-(P, — 1) .
=1

Proof. From (6.21) we get, for | = r, an exact sequence with the last map
% A* @ €'~ — &' surjective and with all maps bundle morphisms. Then we
can compute ch %* in terms of ch %, and ch (§*'4* @ €9, 0 < i < [, from
the formula

chZ, —ch(FA* Q@ %") + ch ($"'4*R®F) — --- + (—1)''ch ¥ =0.

Furthermore, we have
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ch(§"4*®C)-ch¥' = ch((SA* QR C) ® €Y
' = ch (7 4* @D S 4*) R F) = 2ch ($H14* Q@ €Y ,

observing that §'~*4* @ C is isomorphic to $'~:4* @ §'~*4*. This gives

62 ch¥' = S:le{z ¢h &, — ch (S$'4* ® C)-ch&® — - --
+ (—1)'ch (4* ® C)-ch -1} .

From the defining equation (2.5) of 5 follows the exactness of the sequence

0-SA*RC—-S14*RC — -+

6.24) S A*RAA*RC) = A A*®C—0.

Moreover, an inductive procedure gives ch (S"4* @ C) in terms of

ch (;\ A*® C), | — i > j. This together with (6.23) and the definition of E,
F gives the formula (6.22).
Remark. A direct computation shows that

P,=+1,P,=+1—3ch(4*®OC), ---,

Po= 41— 3ch(A*®C) + 3ch () 4*® C) — kch (A 4* ®C)
+ 4ch(A 4*®C) + §ch(A 4* ® C)-ch (4* ® C)
—4ch (A 4* @O {ch (* @ OF + dfeh(A 4*@O) , -+

7. Fixed point formula for a nondegenerate ["~vector field X

Suppose that X is a I"-vector field with isolated zeros. Furthermore assume
that I” has the degree k = 1, and that the Lie derivative & in the direction
of X, as an operator on the tensor bundles over M, restricted to the zero point
of X is a nonsingular endomorphism of the fibre. In that case we say that X
is nondegenerate, and only nondegenerate I'-vector field X with a set § of
isolated zeros will be considered. The vector field X generates a 1-parameter
group {f,} of transformations f, = exp tX. The following two propositions show
that all the assumptions on the transformations f,: M — M are satisfied for the
Atiyah-Bott fixed point theorem to be applicable to this situation. From Prop-
osition 2.2 follows that the vector bundles Ci_, in resolution (2.10) can be
given by
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7.1 Ci=(\T*®R)(\ T*®3) .

The differential of the transformation f, maps I" vector fields into I” vector fields.
Hence there is an induced bundie map of R,, r > %, into itself, covering the
transformation f,. Because g,,, is the kernel of the projection R,,,— R,,
the induced transformation on R, maps g, ., into itself. Furthermore from the
definition (2.5) of 4 it follows that the induced transformation commutes with 4.
Therefore f, has a natural lifting

(7.2) ¢: fiiCioi—Cioys 0<i<n.

I, :Ci.,—f'Ci_, is the natural transformation of sections of C;_, into the
sections of the induced bundle f;C;_, we define an endomorphism

(7.3) T;=TG¢) = ¢i-I'y: Ciey > Ciy -

We denote by the same symbol the mapping induced on sheaves of germs of
smooth sections.

Proposition 7.1. The first order operator D: C_, — Ci*} commutes with
T:, in other words, :

(7.4) T#D = DT .

Proof. First of all observe that the map T} can be lifted, in an obvious
way, to a map

i Z

such that TG(A T* ® 9,,0)C A T* ® gy, and that it commutes with the

projection p: /i\ T*@ R, — Ci_,. Since T¢ is a composition of two maps,
namely, the natural transformation and the lifting of f,, the commutativity of
the natural transformation with D is obvious. The lifting of f, commutes with
D because D is essentially the sum of two operators, namely, ordinary differ-
ential and §, which commute with the lifting. Proof of this point is done by
direct computation, using the explicit description of D in [8]. g.e.d.

From now on let us restrict ourselves to the case ¥ = 1. We shall use much
finer description of the lifting ¢: f;'C; — C§, 0 < i < n. For this reason we
look at the structure of C; more closely. The basic observation is that once a
splitting 1 of the exact sequence

(7.5) 0—-9g,—-R,—-R—0

is chosen, there is an isomorphism [9]

(7.6)  Cio (A T* @R ® A T*®9)) -
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Proposition 7.2. A splitting 4 of the exact sequence (7.5) can be chosen in
such a way that, when restricted to the fibres over the zero points of X, it
commutes with the transformations induced by the 1-parameter group {f.}.

Proof. Let (x', - - -, x") be the coordinates of a point x in a neighborhood

U of a zero point p of X, and Y, - - -, Y, be nonvanishing I"-vector fields on
U. Then define a splitting 2;: R,|U — R,| U by

7.7 Y =7Y,;.

By a direct computation it is easy to see that i, commutes with f, over the
whole U.

Let U = {U,} be a covering of M such that for each zero point p of X there
is a neighborhood W(p) C U;,, U,, being the open set of the covering U,
W@)NU;,=8,i#*i,; W(p) N W(g) = @ for p # g. This can be done because
S is the set of isolated points. Consider now a partition of unity {¢;} associated
to such U. K 4, is the splitting over U;, defined by (7.7), then 2 = 2'¢,4; splits
(7.5) and commutes with f, on some ¥V(p) C W(p). Therefore the induced trans-
formation R,(p) on R, (p) commutes with 2 also.

Corollary. There exists an isomorphism (7.6) commuting with the natural
liftings of f. over the set S of zero points of X.

Let us denote by

(7.8) (TH*: H(M,6) — H (M, 6)

the endomorphism induced by 7% and by the Jacobian J,(f,) of f,. The Atiyah-
Bott fixed point theorem gives the formula

n s .\ trace gi(p)
79 B L (-Dimeee T = 2 4 Va7

Similarly as in the previous section we can give a more explicit form to the right
hand site by considering the special situation arising from the given I'-structure
on M.

The lifting ¢¢ (7.2) is an operator on ( /{ T*@R,) @ é( /z\ T™*®g,) up to
the isomorphism (7.6). Let us denote by =x,, x, the projections of this vector
bundle onto the components, and define the operators (over ¥ (p)—see the proof
of Proposition 7.2)

ot = @ifiicn: A T @R|VG) ~ A T* @R V) ,

(7.10) )
Bi = @ifim 6N\ T* ® g0)

V@) = 6\ T+ ® gl); V) .

Then
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(7.11) trace ¢i(p) = trace ai(p) + trace Bip) .

Trace ai(p) is easy to compute because

a(@) = A 1®) ® f.()s

so that

(7.12) trace ai(p) = trace }\ f¥(p) -trace f,(p)* .

From the exact sequence of vector bundies (2.6)

é & -1 § i
0—g1yy— -+ —m AT*®Rg— ANT*®g,
3 i

— d(ANT*®g)—0

by inductive procedure it follows that
(7.13)  trace §ip) = 3 (—1)* trace A f§-trace f5*!
k=0
where f§*': 9;.1 — g, is induced by f,, fA(p) = f.(p),. This shows that

3 (—1)* trace i(p) = 3 (—l)i{trace A F*(p)-trace (o)

- i=0 i=0

+ T (~1)* trace A f¥(p)-trace f’;“} .

The Lie derivative Ly in the direction X induces on the fibre T,(M), p ¢ S,
nonsingular endomorphism L, = Ly|T,(M) given in (3.4). Then a direct
computation shows that f,’(p) = exp tL,, and f,* = exp tL,*. Denote by L:+!
the transformation induced by Ly on the fibre g,.,(p) defined by (3.4). Then
fi*{(p) = exp tLi*'. Assume furthermore that L, has, for each p € S, n non-
vanishing eigenvalues 4,(p), - - -, 2,(p). If there is no danger of confusion we
shall write simply 4,, - - -, 4,. In a suitable local coordinate system around p the
endomorphism L, is represented by a matrix with the only nonzero elements
A, -+ -, 4, in the diagonal. These observations make it possible to give the
Lefschetz number (7.9) in a more explicit form

Lemma 7.1. The Euler characteristic

1 i A
MB) =Y ey _1mlu ‘Lo (r gils
| 4 (=DFtr A it e
= | (the constant term)
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where ¢, = sign det (1 — e'%2).

It turns out that we can get formally similar expression for the topological
index i,(D + D*). Notice, first of all, that the isomorphism ¢ in (7.6) extends
tothe comple}nﬁcauon of the bundles mvolved Identify Ci ® C with the ¢-iso-

morphic bundle ( /\ T*Q@R)X C D a( /\ T*® g,) @ C. Then recall that there
are bundles ¥4, i > 0, &,,j > 1, and 4 over By, such that C{ ® C = f~'¥¢7,

i>20,9,C=f'%,;,j=>1,and T = f'4. Then from (7.6) we see that
(6.22) has the form

chE — chF = 3 (~1)ich Ct

i=1

n

=3 (—l)i{ch(/i\ A*® €% + chs(A A*®,Sfl)} .

The complexification of the d-sequence

0> Loy s A* R L, — - > N A* R 2,
8 | s i
Lo N A*R L, —> BN\ A* R L) —> 0
gives
% k3 i-k
chd(\NA*Q L) = kZo(—l)” ch(A\ 4* ® Z4.0)

=313 (~D*ch A (U*®O)-ch £y, ,

because ( }:\ AR C = /ﬂi (A* @ C). Then the topological index i,(D + D*)
= 2y(M, 0) = y(M, 6,), where

0—0,—C®C-2c00c2 ... 2 crvc—0,

is given by the formula
. _ ChE —chF
D + D¥) = f** }1d (4®C) i ln
_ i td (A®C) ¢ *
(1.15) =24 { = ;_1( 1)ich A (4* ® C)-ch @

2 1)k ch A\ (4* ® C)-ch Z1.0)]

If we denote the weights of the real H-module V by x,, - - -, x;, then
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td(4®C) = ﬁ X ) =xeeex

_e.z:z 1 — ezt

The complexified H,-module V @ C has weights = x,, - - -, ®x;, so that

Ch /r\ (A* ® C) = Z e=:;l*...=xir .

1< <Lir St

Because C* = A ® C, we get

chC = Zl]e““.

t=]

Finally if =w,, - -, =w, are the weights of the H;-module L, ,, we have
Ch $k+1 = i e ’
i=1

where the weights w, are polynomials in the x,’s. See, for example, [4].

Let us write, for a moment, x; instead +x,, and x,,, instead —x,, for i =
1, .- -, ! Plain substitution of all these expressions into the right hand side of
(7.15) shows that there is a polynomial Q(x,, - - -, x,) in the indeterminates
Xy, + -+, X, such that

i(D + D¥) = f**{n 1 Q(xl,---,x,o}[M].

i=1 1 —_ e.l‘{ (x )!/2

Then from Proposition 6.1 it follows that there are polynomials Q.(x,, - - -, X,)
of degree k£ > O such that

Q(xl: e 9x1z) = (-xn e ,xn)llzk;io Qk(xl, e 9xn) .

Finally, we get

(1.16)  i(D + D*) = zf**{ﬂ Z Qu(xiy -+, x| [M] .

i=1 1 —-e“ k=

We can write 1'[ —1-————— = i} é:(x), where ¢,(x) is a homogeneous polyno-
i=1 k=0

mial in the x,’s. Because in formula (7.16) only the term of degree [ in the x,’s
contributes, we see immediately that

(7.17) D + D¥) = Q) + -+ + (DQ}M] ,

writing shortly Q,(x) instead of Q.(x,, - - -, x,).
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On the other hand, using a special coordinate system so that X ~
¥ 2:x%@/0x?) up to the higher order at the point p ¢ S, we can write (7.14) in
the following form:

1 r g,
Q-+ 272 }1 1 — et¥

1M, 0) = 3 &
DES
- i Q.(t, -« -, t1,)|(the constant term).
k=0

In order to compare the right hand side of the above equation with that of
(7.16), the explicit form of the obsolute term is needed.
Because

A
1 — e*

"
oo

L= 1D + D -

and 9, () = 0,4, - - -, 2,) is homogeneous of degree £ where ¢,(2) is a homo-
geneous polynomial of degree s in the 4’s, we get the constant term

1M, 6) = Z} ST e ($o(DQ:(D) + $H(DQ2:,(D)

« 4+ (D) -
Moreover, since i,(D + D*) = 2y(M, @), we have

Z )1/2

f**{¢o(x)Q @+ -+ Sﬁz(x)Qo(x)}[M]

—24-——7ﬁm®9w+ C + DAY -

Let 9(c,(To(M)), - - -, c,(To(M)), To(M) = T(M) ® C, be the index cocycle
(its evaluation on the fundamental cycle [M] is the topological index) of the
operator D + D*. With the formal factorization ¢(T¢(M)) = []%, (1 + y,) one
can express the Chern classes in the usual way as the elementary symmetric
functions in y;’s. Then there is well defined polynomial ¢ such that

¢(yl> e 7yn) = Q(c](TC(M))’ Tty Cl(TC(M))) ’

so that we can summarize now to obtain

Theorem 7.1. Let M be a compact n(==4m)-dimensional differentiable
manifold, and I" a first order elliptic transitive oriented involutive pseudogroup
on M. Let 9(c,(T,), - - -, ;»(T.) be the topological index cocycle of the com-
plex (2.9) (k = 1) (resolution of the sheaf of germs of I'-vector fields on M).
Let @ and ¢ be polynomials related as above. Suppose that the I"-vector field
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X on M has a set S of isolated zero points and that the endomorphism of T ,(M)
induced by the Lie derivative Ly has the eigenvalues 3,(p), - -+, 2,(p). Then

BT, -+, (T = (D), - -+, 2. P)) |
(@ (T) CnlT)) =T & R T

where ¢, = 4-sgn det (1 — e%?).

I wish to thank H. Goldschmidt who has pointed out to me that recently he
has given the most complete proof of the third fundamental theorem for
pseudogroups (used in Proposition 2.2), and that the fundamental properties
of the brackets (used in § 3) and the proof of Proposition 7.1 can be found in
the forthcoming paper of B. Malgrange. Both these papers will appear in the
Journal of Differential Geometry.
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